Publication : Frontiers in cryospheric sciences

 

Fig 2 SPCCs

Sortie de notre article portant sur les cryocarbonates dans le massif du mont-blanc

Capture d_écran 2017-10-03 à 15.44.51

 

 

Geochemical Processes Leading to the Precipitation of Subglacial Carbonate Crusts at Bossons Glacier, Mont Blanc Massif (French Alps)

Publicités

Publication : Climate of the Past

Premiers résultats des modélisations climatiques sur la glaciation Ordovicienne. En collaboration avec le CEA et l’IPGP

climate past

Abstract. The Ordovician is a particular Period during Earth History highlighted by abundant evidence for continental-size polar ice-sheets. Modelling studies published so far require a sharp CO2 drawdown to initiate this glaciation. They mostly used non-dynamic slab mixed-layer ocean models. Here, we use a general circulation model with coupled components for ocean, atmosphere and sea ice to examine the response of Ordovician climate to changes in CO2 and paleogeography. We conduct experiments for a wide range of CO2 (from 16 to 2 times the preindustrial atmospheric CO2 level (PAL)) and for two continental configurations (at 470 Ma and at 450 Ma) mimicking the Middle and the Late Ordovician conditions. We find that the temperature–CO2 relationship is highly non-linear when ocean dynamics is taken into account. Two climatic modes are simulated as radiative forcing decreases. For high CO2 concentrations (≥ 12 PAL at 470 Ma and ≥ 8 PAL at 450 Ma), a relative hot climate with no sea ice characterises the warm mode. When CO2 is decreased to 8 PAL and 6 PAL at 470 and 450 Ma, a tipping-point is crossed and climate abruptly enters a runaway icehouse leading to a cold mode marked by the extension of the sea ice cover down to the mid-latitudes. At 450 Ma, the transition from the warm to the cold mode is reached for a decrease in atmospheric CO2from 8 to 6 PAL and induces a ~ 9 °C global cooling. We show that the tipping-point is due to the existence of a quasi-oceanic Northern Hemisphere, which in turn induces a minimum in oceanic heat transport located around 40° N. The peculiar shape of the oceanic heat transport in the Northern Hemisphere explains the potential existence of the warm and of the cold climatic modes. This major climatic instability potentially brings a new explanation to the sudden Late Ordovician Hirnantian glacial pulse that does not require any large CO2drawdown.

Pohl, A., Donnadieu, Y., Le Hir, G., Buoncristiani, J.-F., and Vennin, E. 2014. Effect of the Ordovician paleogeography on the (in)stability of the climate, Clim. Past Discuss., 10, 2767-2804, doi:10.5194/cpd-10-2767-2014

Mission Maroc Décembre 2012

Une nouvelle mission au Maroc dans l’Anti-Atlas marocain sur les dépôts glaciaires Ordoviciens permettant la reconnaissance et l’échantillonnage des structures de déformations sous-glaciaires.

Ce diaporama nécessite JavaScript.