Virtual Geology

Découvrez « Virtual geology »

 

Virtual Geology est nouveau moyen de découvrir la géologie sur terrain, grace a une immersion dans des visites virtuel à 360° sur le terrain, enrichies de contenus interactifs.

 

Ecole de Terrain L3STE 2017

Ecole de terrain de fin d’année pour les Licences 3eme année en sciences de la Terre de l’Université de Dijon (Jura-Maconnais-Bourgogne). Au programme : études géomorphologiques, environnementales, sédimentologiques et tectoniques.

Publication : Climate of the Past

Premiers résultats des modélisations climatiques sur la glaciation Ordovicienne. En collaboration avec le CEA et l’IPGP

climate past

Abstract. The Ordovician is a particular Period during Earth History highlighted by abundant evidence for continental-size polar ice-sheets. Modelling studies published so far require a sharp CO2 drawdown to initiate this glaciation. They mostly used non-dynamic slab mixed-layer ocean models. Here, we use a general circulation model with coupled components for ocean, atmosphere and sea ice to examine the response of Ordovician climate to changes in CO2 and paleogeography. We conduct experiments for a wide range of CO2 (from 16 to 2 times the preindustrial atmospheric CO2 level (PAL)) and for two continental configurations (at 470 Ma and at 450 Ma) mimicking the Middle and the Late Ordovician conditions. We find that the temperature–CO2 relationship is highly non-linear when ocean dynamics is taken into account. Two climatic modes are simulated as radiative forcing decreases. For high CO2 concentrations (≥ 12 PAL at 470 Ma and ≥ 8 PAL at 450 Ma), a relative hot climate with no sea ice characterises the warm mode. When CO2 is decreased to 8 PAL and 6 PAL at 470 and 450 Ma, a tipping-point is crossed and climate abruptly enters a runaway icehouse leading to a cold mode marked by the extension of the sea ice cover down to the mid-latitudes. At 450 Ma, the transition from the warm to the cold mode is reached for a decrease in atmospheric CO2from 8 to 6 PAL and induces a ~ 9 °C global cooling. We show that the tipping-point is due to the existence of a quasi-oceanic Northern Hemisphere, which in turn induces a minimum in oceanic heat transport located around 40° N. The peculiar shape of the oceanic heat transport in the Northern Hemisphere explains the potential existence of the warm and of the cold climatic modes. This major climatic instability potentially brings a new explanation to the sudden Late Ordovician Hirnantian glacial pulse that does not require any large CO2drawdown.

Pohl, A., Donnadieu, Y., Le Hir, G., Buoncristiani, J.-F., and Vennin, E. 2014. Effect of the Ordovician paleogeography on the (in)stability of the climate, Clim. Past Discuss., 10, 2767-2804, doi:10.5194/cpd-10-2767-2014

L3STE 2014 – Ecole de terrain de sédimentologie

Octobre 2014 – Ecole de terrain de sédimentologie pour les Licences 3eme année en sciences de la Terre de Dijon. Au programme sédimentologie de faciès dans différents environnements : fluviatiles, glaciaire, marins entre la Côte d’Or et le Jura.

Publication : sedimentary Geology

Sortie du papier sur le creusement des vallée tunnel durant l’Ordovicien

en tete papier sed geol maroc edouard

Edouard Ravier, Jean-François Buoncristiani, Michel Guiraud , John Menzies , Sylvain Clerc , Bastien Goupy , Eric Portier 2014. Porewater pressure control on subglacial soft sediment remobilization and tunnel valley formation : A case study from the Alnif tunnel valley (Morocco). Sedimentary Geology 304, 71-95.

Mission : études d’analogues terrain de méga injectites en Californie

Etude sur le terrain de deux complexes d’injection sableuse à l’échelle du réservoir :

  • Panoche et Tumey Hills (Paléocène inférieur) situé le long de la bordure ouest de la vallée de San Joaquin.
  • Santa Cruz (Miocène à Pliocène) situé dans la baie de Monterey.

logo BP

Recherche : et parfois, au milieu, coule du pétrole…

 

Interviews pour Nature News : Mont Blanc growing with help from glaciers

Nature News publie un article suite à une interview portant sur nos travaux réalisés sur le relief du massif du mont-Blanc qui viennent d’être publiés dans EPSL

Olive Heffernan. 2013. Mont Blanc growing with help from glaciers Nature doi:10.1038/nature.2013.13357

nature view comment on EPSL

Ref  : Godon, C. et al. Earth Planet. Sci. Lett. http://dx.doi.org/10.1016/j.epsl.2013.05.018 (2013).

Publication :

S0012821X

Sortie du papier sur l’étude du relief du mont-blanc : Godon C., Mugnier JL., Fallourd R., Paquette JL., Pohl A., et Buoncristiani JF.2013. The Bossons glacier protects Europe’s summit from erosion. Earth and Planetary Science Letters, in press

Cet article est en ligne 

Highlights

  • Nous déterminons l’efficacité de l’érosion dans un bassin versant glaciaire.
  • Source des sédiments est déduite sur de critères macroscopiques et sur des datations U-Pb sur zircons.
  • Le transport glaciaire ne se mélange  les sédiments  supraglaciaire et sous-glaciaires.
  • L’érosion sous-glaciaire est inférieure à l’érosion dans les zones non glaciaires.
  • Il n’y a pas d’érosion sous glace froide, les glaciers de protéger donc le relief.
  • We determine the erosion efficiency in a glaciated watershed.
  • Sediment source is inferred from macroscopic criteria and U–Pb dating on zircons.
  • The glacial transport does not mix the supraglacial and the subglacial sediments.
  • The subglacial erosion is lower than the erosion in the non-glaciated areas around.
  • There is no erosion beneath cold ice meaning that the glaciers protect the relief

sortie L3 2013-13

Publication :

Notre dernier papier sur la glaciation Ordovicien est en ligne

Subglacial to proglacial depositional environments in an Ordovician glacial tunnel valley, Alnif, Morocco

  • a Laboratoire Biogeosciences UMR/CNRS 6282 Université de Bourgogne, 6 Bd Gabriel, 21000 DIJON, France
  • b GDF Suez EPI, 1 place Samuel de Champlain – Faubourg de l’Arche 92930 Paris La Défense Cedex – France

Abstract

This paper presents the sedimentary analysis of an exceptional Ordovician glacial tunnel valley in the eastern part of the Anti-Atlas. The valley infill comprises two major glacial erosion surfaces (striated pavements) each overlain by a fining-upward glacial unit. These units are composed of five distinct facies associations, recording the evolution from subglacial to proglacial environments, and an additional sixth facies association, overtopping the tunnel valley infill, and associated with post-glacial environments. The tunnel valley infill also records a transitional environment between the subglacial and proglacial settings, which is compared with the Antarctic ice-sheet margin. These three environments are defined by the position of the grounding line and the coupling line. The new proposed depositional model also differs from usual Ordovician depositional models in which the main tunnel valley infill is interpreted as essentially proglacial outwash deposits, in a range of glaciomarine to glaciofluvial environments. Overall, a substantial part of the valley infill (~ 50% of volume) was deposited in a subglacial setting. The sedimentary bodies could form potentially thick and laterally extended, although these were limited by the shape and extent of the subglacial accommodation space. Finally, the sedimentary record, when compared with regional analogues, also provides information for the palaeogeographic reconstruction of the Ordovician ice-sheet in this region.


Highlights

► An Ordovician tunnel valley infill is described in detail ► Subglacial and proglacial depositional environments are determined ► An additional environment is proposed associated with a lightly grounded ice-sheet ► Accommodation space is defined for proglacial and subglacial settings ► The study provides additional data for Hirnantian ice-sheet reconstruction